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1 Introduction

1.1 Motivation

Over the last two decades, we have witnessed an explosively growth of data, courtesy of the ubiqui-
tous Internet. With a growing dense of transistors on a chip, we have achieved greater computational
ability on smaller devices to communicate with each other over various Internet protocols, leading
to a phenomenon called the Internet of Things (IoT). By 2020, we expect to see over 20 billion such
IoT connected devices in deployment.

As a consequence of IoT, there is another stream of data (industrial IoT, smart cities, autonomous
vehicles, et al.) adding to the already explosive growth rate of data. The massive volumes of data
make it a challenge to process in batches, let alone streaming and making decisions in real-time
(or even near real-time). The paradigm of distributed computing emerged over the last decade to
combat the challenges of deriving insights from IoT data that would otherwise not be possible on
a single machine. Distributed systems, developed and adopted throughout industry and academia,
made it possible to process and derive insights from unfathomable amounts of data. The advent of
distributed computing systems is a consequence of the availability of commodity clusters and the
need to process the ever-increasing data generated by the myriad of sensors, actuators, and other
devices with even remotely decent processing or communication capability. New algorithms are
developed, and existing ones are modified/fine-tuned to complement the advances in computational
developments. Examples of a few such algorithms include neural networks, K-means, MLR, SVM,
et al.

We mainly focus on anomaly detection algorithms in this paper. Though reasonably accurate and
efficient, most of the models mentioned above require large sets of training data to make predic-
tions and detect anomalies. Additionally, the models are limited by the quality of data used for
training. On encountering a never-before-seen event, the models are bound to make incorrect deci-
sions/inference. To deal with such use cases, we need models capable to learn on the fly, otherwise
known as online learning algorithms.

1.2 Problem Statement

The Indianapolis 500 (popularly known as the Indy 500) is an annual race organized by the Indi-
anapolis Motor Speedway (IMS), with roughly 33 racing cars participating in a race witnessed by
roughly 250,000 people. As described in section 1.1, with the advent of smaller but powerful com-
putational devices, the cars and race tracks come fitted with hundreds of sensors and actuators. The
sensors in the cars record and transmit various metrics (speed, engine rpm, throttle, tire pressure,
steering direction, brake % et al.) to the main server present on premises of the Indy 500 race track.
The approximately 2.5-mile track comes with sensors and timing belts laid underneath. From the
author’s conversation with the technical experts at the Indy 500 offices, the sensors in the cars and
tracks cumulatively generate around 5 million data points in a single lap! The analysis and process-
ing of the telemetry data naturally become challenging due to the high data influx attributed to the
200 laps in a single race.
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To build an application able to detect anomalies on streaming data in real-time for various metrics
recorded by the myriad of sensors in one car of the plethora of racing cars, we face two significant
challenges. First, we must have an online learning algorithm capable of learning the variations
in data by itself when there is no ground truth label available and adheres to the time constraints
of a real-time application with a reasonable execution latency [1l]. Second, we need a distributed
computing framework to split the tasks of detecting outliers for metrics across multiple nodes. It
is without question that we need a distributed application for the simple reason that running any
learning algorithm even on a single metric would require an appreciable CPU resource, let alone
running numerous instances of the same algorithm for each of the metrics across all cars in the Indy
500. Hence, it is apparent that we need a distributed system to perform anomaly detection for a
real-time application.

In this paper, we examine a few of the online learning algorithms like Hierarchical Temporal Mem-
ory (HTM) and Seasonal Hybrid Extreme Studentized Deviate test (or SH-ESD, used in Twitter
Anomaly Detection) to evaluate their applicability to the Indy500 race. We choose the two algo-
rithms because of their capability to detect outliers, as highlighted in various benchmarks [2]]. One
critical feature of such algorithms should be detecting outliers without training on a previously tai-
lored dataset. Courtesy of the Indycar race held on May 28, 2017, the input data for our application
and testing comprises of the raw logs for the duration of the race in the form of enhanced results
protocol (eRP). We show why HTM model, proposed by Numenta is the clear choice for performing
anomaly detection over streaming data [3].

2 Methodology and Algorithm

2.1 Application Architecture and Design

We need to answer a few basic questions in order to design and implement our anomaly detection
application. To start with, we need to understand as to what is an anomaly (or what constitutes one),
for which domain experts come to the rescue. Online learning algorithms can find the abnormal
pattern in the data with best efforts, but only under the predefined assumption of what is normal.
It is also worth noting that the definition of normal could change over the race. For instance, an
absolute halt (speed becomes 0.0 mph) gets registered as an anomaly initially but may get regarded
as an expected event if there too many pit stops (where the vehicle halts deliberately, so speed is 0.0
mph ). Domain experts help establish the notions of normal and abnormal in the application.

2.2 Online Learning Algorithms

In this section, we will compare two of the major anomaly detection algorithms and evaluate the
results in this paper: HTM and SH-ESD test. The input data comprises a vector of scalar values
representing each of the metrics streaming from car sensors and we run the algorithms on the data
to assess the results. However, there are distinctions with how we compare the algorithms against
each other, given each comes with its caveats as described in the following subsections. We measure
the capability of the algorithms with two metrics: Execution Latency and Quality of Detection
(QoD). The former is the average time taken by the algorithm to process a given record and predict
its anomaly likelihood, while the latter is the ability of the algorithm to detect true positives and true
negatives in the input data stream. We perform experiments to evaluate the latency and QoD for the
two algorithms on the Indycar dataset, which we show in section 3.

2.2.1 Hierarchical Temporal Memory

HTM, designed by Numenta, operates like the neocortex of the brain. The neocortex is involved in
higher cognitive functions such as reasoning, conscious thoughts, language, and motor commands.
HTM imitates the process of sequential learning in the cortex. The current input, x¢, is fed to an en-
coder and then a sparse spatial pooling process. The resulting vector, a(Xt), is a sparse binary vector
representing the current input. This component models temporal patterns in a(xy ) and outputs a pre-
diction in the form of another sparse vector m(x¢). m(x¢) is thus a prediction for a(x¢ + 1). HTM
sequence memory consists of a layer of HTM neurons organized into a set of columns. The network
accepts a stream of inputs encoded as sparse vectors. It models high-order sequences (sequences
with long-term dependencies) using a composition of two separate sparse representations. The cur-



rent input, z; and the previous sequence context, X3, X¢2, X¢1, are simultaneously encoded using a
dynamically updated sparse distributed representation [4]]. The network uses these representations
to make predictions in the form of a sparse vector [J5]].

Given the current input, Xt , a(X¢) is a sparse encoding of the cur- rent input, and 7(x¢—1) is the
sparse vector representing the HTM network’s internal prediction of a(x). The dimensionality of
both vectors is equal to the number of columns in the HTM network (we use a standard value of
2048 for the number of columns in all our experiments). Let the prediction error, Sy, be a scalar
value inversely proportional to the number of bits common between the actual and predicted binary
vectors:

1 m(xe—1) - a(Xy)
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where |« (x¢)| is the scalar norm, i.e. the total number of 1 bits in a(xy). In Eq. (1) the error will be
0 if the current a(x¢) perfectly matches the prediction, and 1 if the two binary vectors are orthog-
onal (i.e. they share no common 1 bits). st thus gives us an instantaneous measure of how well the
underlying HTM model predicts the current input x.

2.2.2 Seasonal Hybrid ESD

The Seasonal Hybrid ESD (S-H-ESD) builds upon the Generalized ESD test for detecting anomalies.
Similar to HTM, the algorithm can be used to detect anomalies in time-series data as well as a
vector of numerical values. The algorithm can detect both global and local anomalies by employing
time series decomposition and using robust statistical metrics, viz., median together with ESD. SH
ESD is available under the name of AnomalyDetection, an open-source R package developed at
Twitter to detect anomalies robust from a statistical standpoint, in the presence of seasonality and an
underlying trend. The implementation of the algorithm allows one to specify the maximum fraction
of anomalies, the # of data points to consider in a given period, the level of statistical significance
with which to accept oe reject anomalies, threshold value, and more.

However, unlike HTM, which assigns a score between 0 and 1 to an input value (close to 1 implies
higher anomaly likelihood), SH ESD flags an input with just a boolean flag. Thus, we have no clue
about the degree of certainty of an anomaly. Additionally, the R package implementation of SH
ESD makes it challenging to port the algorithm to a low latency streaming application running on a
distributed system.

2.3 Application Architecture

In our application, the telemetry data from the racing cars and the track is published to a Pub-
lish/Subscribe message broker over the TCP/IP protocol to a cloud instance. We use Apollo MQTT
for the ease of implementation and high quality of service (QoS). We run the application as a topol-
ogy on Apache Storm while using the open-source and community managed Java implementation of
the algorithm, HTM.java. The topology is composed of a spout called Indycarspout, and two bolts,
namely Scalarmetricbolt and Sinkbolt. Fig. 1 shows the dataflow architecture for the application
running the HTM algorithm. For the sake of simplicity, we demonstrate the dataflow for just three
cars. Indycarspout subscribes to a topic named same as the corresponding car number for which
it runs anomaly detection and sends the data downstream for Scalarmetricbolt(s) to process. The
Scalarmetricbolt (abbreviated in the figure as SB) class takes a metric type as an argument (speed,
rpm, throttle) and runs an HTM network to detect anomalies on a chosen metric. The results from
above reach Sinkbolt, which we intend to use for correlation analysis between the cars in the future.
Currently, it only logs the results of anomaly detection to disk. Running a task (spouts and bolts
above) with multiple executors adds parallelism to the application execution. Each executor runs as
a separate thread. We run our application at various parallelisms, and even run it on a single executor
to compare against a single-threaded local process detecting anomalies on a single metric. We refer
to the latter as the Sequential mode of HTM execution, which we describe further in section 3.
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Figure 1: Storm topology structure (limited to display three cars)

3 Experiments and Results

3.1 Input data and experimental setup

‘We run our application on the data logged for the 2017 race held on the Indianapolis Motor Speed-
way. For reasons of being private and high-value data to individual racing teams, we had limited
access to the data. The telemetry data is available in eRP (enhanced Results Protocol) format, and
it’s a subset of the entire telemetry logged throughout the race. In the future, we intend to run our
application over the entire data for Indycar 2018. To effectively communicate the behavior of the
input data and our results, we limit our view to cars #8,#10 and #11. The data patterns exhibited
by the three cars give us plenty of opportunities to detect anomalies and hence, narrow our focus to
conduct an in-depth analysis of the results. Figure 1 shows the vehicle_speed attribute for the three
cars. The input value of O mph points to the start line, pit stops, and the finish line.

Input value (mph)

—— car#8
—— car#10
car#11

2000
4000

record #

Figure 2: vehicle_speed data for car #8, #10 and #1 1



We run the application in two modes: sequential and streaming. The sequential mode is, as the
name suggests, a single-threaded process running on a single machine, while in streaming mode,
we run a Storm topology with multiple executors, thus adding parallelism. We also deploy Storm
application with a parallelism of 1 to conduct a one-on-one comparison against the batch mode and
determine the overhead incurred of running the same task in a distributed mode for the same compute
resources, if any. We also run HTM on NuPIC (NUmenta’s Platform for Intelligent Computing)
native python library and compare the results.

In sequential mode, we launch anomaly detection on telemetry data as single threaded java process
running on just one machine. The set heap size for the execution was 16 gigabytes. Assuming we
run one task per executor in the streaming mode, the total number of nodes needed to run our Storm
topology is:
Total No. of Tasks
Total Cores available

2

We deploy the anomaly detection application as a topology comprised of IndycarSpout, Scalar-
MetricBolt, and Sink bolt. In our current implementation, we run anomaly detection on the metrics
vehicle_speed, engine_rpm and throttle corresponding to each car. Thus, we run one spout and
three bolts for every car, the output of which goes to the sink; giving a total of five tasks. Hence, for
33 cars, we have a total of 133 tasks. Since each node consists of 48 cores, we need [%] = 3 nodes
to run our Storm topology in a distributed fashion. The minimum worker heap size set in Apache
Storm is 16 gigabytes. To simulate a streaming scenario, we write a parser to process the raw logs
and publish the data to the MQTT endpoint. The MQTT broker acts as the communication endpoint
between the sensors on the edge and our system, as well as the system and the end-user dashboard.

We logically execute our topology structure in the form of a YAML file (yet another markup lan-
guage) and launch the application on top of Storm Flux. The finaltopology.yaml launches the appli-
cation for anomaly detection for all 33 cars on the metrics vehicle_speed, engine_rpm, and throttle.
The following command launches the IndyCar topology:

storm jar Indycar500-1.0-SNAPSHOT.jar org.apache.storm.flux.Flux -remote finaltopol-
ogy.yaml

3.2 Execution Latency

Figure 3 constitutes the violin plots for the execution latency corresponding to cars #8, #10 and #11.
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Figure 3: Execution latency for cars #8, #10 and #11

The application, executed multiple times, gave an average execution latency of 3.34 ms for car
#8, 3.33 ms for car #10, and 3.27 ms for car #11. There is an initial overhead attributed to the
HTM network instantiation and allocation of memory buffers for layers of SDRs on the arrival of
the first input, which gradually declines. The spatial and temporal poolers (the layers of the HTM
network) register high anomaly scores initially as every record is an anomaly in the beginning, which
eventually flattens out as the model learns the pattern. At the start, there are no predictive states;
hence, every cell in the mini-columns gets activated, incurring higher time to change their states.

33 QoD

To evaluate the effectiveness of the HTM algorithm in detecting anomalies, we visualize the statistics
for the QoD by plotting the input data value and the corresponding anomaly score generated for



that data point. The anomaly score is a float-type value between 0.0 and 1.0, with 0.0 flagged
as a normal/expected value and 1.0 flagged as a definite anomaly. The anomaly scores generated
subject to parameters used to define the input layers (SP and TM), like learning radius, permanence,
threshold, minimum and maximum input value, and more. For an optimized set of such parameters
and domain expertise, it is possible to determine a minimum value of the threshold for the anomaly
scores where the system triggers an anomaly corresponding to the input data point. For instance,
based on the preliminary results, we see that an anomaly score greater than or equal to 0.3 captures
all the major fluctuations in the vehicle_speed metric for the cars. In our current implementation,
the learning process takes place over the entire course of the race. The fact is evident in figure 4
where the anomaly score (red line) is high whenever we see a sharp change in input metric (blue
line). The anomaly score remains comparatively low when the input exhibits a relatively consistent
pattern. Alternatively, we can influence the learning range (say limit learning to a fixed number of
laps in history) based on a moving average [6]].
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Figure 4: anomaly scores on vehicle_speed & engine_rpm

Furthermore, we examined the influence of the minimum and maximum value set for a metric on
the execution latency and the anomaly scores. We observed that setting a <min., max.> value of
<0.0,250.0> for vehicle_speed resulted in higher latency and higher values of anomaly scores than
the value <-50.0,300.0>. We know that speed of -50.0 mph makes no sense since a car can either
be stationary (vehicle_speed=0 mph) or moving (vehicle_speed > 0 mph). However, we have an
appreciable zero data points (vehicle_speed, engine_rpm, throttle, et al. =0.0) in the race telemetry,
courtesy of pit stops. Setting minima of 0.0 in a dataset that already contains a plethora of 0.0 results
in high values of anomaly scores since that data point is also an extremum. The high latency is a
result of activations of columns that are not in the predicted state, thus resulting in activation of
every cell of the said column (referred to as boosting).

3.4 Sequential vs Streaming mode performance

The total time to process Indycar telemetry data for a single car in sequential mode is about 21.9
seconds. The same takes about 23.94 seconds to run on Storm at parallelism of 1 and 2 workers (one
worker to run IndycarSpout and another worker to run ScalarmetricBolt). With parallelism of 2



and three workers (two workers running one executor each of ScalarmetricBolt and one running
IndycarSpout), we get a total runtime of 13.09 seconds. We similarly calculate the total runtime
for different levels of parallelism and workers as shown in the table.

Parallelism Workers Total Time (sec.)

1 2 23.93
2 3 13.09
3 4 12.92
4 5 9.26

5 6 10.89

To quantify the improvement of running HTM on a streaming framework regarding runtime, we
plot the speedup achieved from the table above. The speedup, S is given by equation (2). T is the
time taken by the batch HTM job, while Ty, is the time taken by Storm running with parallelism p.
We see the speedup plot in the following figure. The fall in speedup from parallelism of 4 to 5 is
attributed to load imbalance.
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Figure 5: Speedup in HTM anomaly detection

3.5 NuPIC Python vs. HTM.java

In this section, we describe the performance nuances between NuPIC’s python and our HTM.java
packages in terms of the latency and QoD. The NuPIC python library is the official implementation
of HTM by Numenta, while HTM.java is the open-source community-managed implementation of
HTM. Since we use HTM.java library in our streaming application, we decided to run anomaly
detection on the same dataset and compute node for both libraries and evaluate the results. Table 2
lists the average execution latency (in milliseconds) for the two algorithms for the given cars.

Car# NuPIC python HTM.java

8 3.32 3.34
10 3.03 3.33
11 3.44 3.27

The latency performance of both the libraries is almost the same. In spite of Java being faster than
Python, there are 30 data points around the 19000th record index, where the queue of the publisher
object in HTM gets filled. At the point, memory buffers need to be re-allocated. In these 30 data
points, we observe relatively high latencies (500-800 ms), which eventually come back down to 1-2
ms. These outliers affect the average execution latency in HTM.java. In Python, the entire input
dataset is passed as a single batch in the form of a CSV file instead of publishing one object at a
time as we have done in the Java implementation.

As of the anomaly scores, on comparing with the default parameters set for the HTM network in
NuPIC, out HTM.java implementation of the HTM model reacted more gracefully to sudden and
gradual changes in data. The pit stops were registered with an anomaly score of 0.5, while other
values flagged an anomaly score between 0.7 and 0.9 in the NuPIC python execution. In contrast,



the value of anomaly score fluctuated between 0.0 and 1.0 more evidently and in synchrony with the
flow of the input data.

3.6 SH-ESD Test

We show the anomaly detection capability of the Seasonal Hybrid ESD test on the metrics vehi-
cle_speed, engine_rpm and throttle for a single car in figure 6.

20% Anomalies (slpha=0.5, direction=both) 15% Anomales (alpha=1.5, direction=both) 15% Anomalies (alpha=1.5, direction=both)

M" g . @ emen

Figure 6: SH-ESD detection on the three metrics

4 Conclusion

In our paper, we evaluate the choice of using HTM for anomaly detection in a distributed real-time
streaming application. We compare HTM with another anomaly detection algorithm, SH-ESD and
justify the advantages of the former over the latter. Additionally, we define two metrics that are
critical to our application: execution latency and quality of detection (QoD). To develop a useful
streaming application, the latency incurred to flag an input as anomalous or usual must be minimal,
while the accuracy, i.e., QoD of our application must be high (for obvious reasons!).

We demonstrate the speedup of our distributed application against that of sequential execution on
the same dataset and parameters specific to the HTM algorithm. We enumerate the improvements
in end-to-end run time for various levels of parallelism in our Storm application. We compare the
open-source Java implementation of HTM with the official Numenta managed, NuPIC python. We
compare the average execution latencies for similar input parameters and dataset on various cars.
Last, we evaluate the performance of the SH-ESD algorithm on the Indycar telemtry. Although
faster than HTM on a single node, SH-ESD exhibited poorer QoD and cannot be leveraged to run
on a ditributed system.
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